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1. Let Φn, n = 1, 2, . . . be a sequence of functions on [−π, π] with the following prop-

erties: sup{
∫ π
−π |Φn(t)| dt : n = 1, 2, . . . } < ∞, 1

2π

∫ π
−π |Φn(t)| dt → 1 as n → ∞ and

sup{|Φn(t)| : π ≥ t ≥ δ} → 0 as n → ∞ for each δ ∈ (0, π). If f ∈ L1[−π, π], then

prove that f ∗ Φn → f in L1[−π, π].

Proof. First we claim that lim
n→∞

‖Φn ∗ f − f‖∞ = 0 for all continuous f on [−π, π].

Observe that

(Φn ∗ f)(x)− f(x)
1

2π

∫ π

−π
Φn(t) dt =

1

2π

∫ π

−π
Φn(t)[f(x− t)− f(x)] dt

Take cn =
1

2π

∫ π
−π Φn(t) dt and the translation operator (Ttf)(x) = f(x − t). Since

continuous function f on [−π, π] is uniformly continuous, given ε > 0 there exists

δ ∈ (0, π] such that ‖Ttf − f‖∞ = sup{|f(x− t)− f(x)| : x ∈ [−π, π]} < ε whenever

|t| ≤ δ. Then

‖Φn ∗ f − cnf‖∞ ≤
1

2π

∫ π

−π
|Φn(t)|‖Ttf − f‖∞ dt

=
1

2π

[ ∫
|t|≤δ
|Φn(t)|‖Ttf − f‖∞ dt+

∫
δ≤|t|≤π

|Φn(t)|‖Ttf − f‖∞ dt
]

≤Mε (for some constant M)

where we have used the given facts sup{
∫ π
−π |Φn(t)| dt : n = 1, 2, . . . } < ∞ and

sup{|Φn(t)| : π ≥ t ≥ δ} → 0 as n→∞ for each δ ∈ (0, π). Thus lim supn ‖Φn ∗ f −
cnf‖∞ ≤Mε. Since ε > 0 is arbitrary and cn → 1, we have limn ‖Φn ∗f − cnf‖∞ = 0.

Let f ∈ L1[−π, π]. Then given ε > 0 there exists a continuous function g on [−π, π]

such that ‖f−g‖1 < ε. Recall that L1[−π, π] is a Banach algebra w.r.t. multiplication

as convolution. Therefore for all n ∈ N

‖Φn ∗ f − Φn ∗ g‖1 ≤ ‖Φn‖1‖f − g‖1 ≤Mε
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Since g is continuous on [−π, π], we have ‖Φn ∗ g− g‖∞ < ε for sufficiently large n as

we have proved in the above discussion. Then

‖Φn ∗ g − g‖1 ≤
1

2π

∫ π

−π
|(Φn ∗ g − g)(t)| dt ≤ ‖Φn ∗ g − g‖∞ ≤ ε

for sufficiently large n. Hence

‖Φn ∗ f − f‖1 = ‖(Φn ∗ f − Φn ∗ g) + (Φn ∗ g − g) + (g − f)‖1

≤ ‖Φn ∗ f − Φn ∗ g‖1 + ‖Φn ∗ g − g‖1 + ‖f − g‖1 ≤ (M + 2)ε

for sufficiently large n. Thus Φn ∗ f = f ∗ Φn → f in L1[−π, π].

2. If f ∈ L2[−π, π] and fk = f ∗ f ∗ . . . ∗ f (k-fold convolution of f), then show that

‖fk‖
1
k
2 → sup{|f(n)| : n ≥ 1} as k →∞.

Proof. Observe that

‖fk‖1/k2 = ‖(f̂)k‖1/k2 = ‖(f̂)2‖1/2k → ‖(f̂)2‖1/2∞

where we have used norm equivalence in L2, properties of transforms of convolutions,

and the fact that ‖x‖k → ‖x‖∞ as k →∞ for x ∈ `k.

3. Prove or disprove: if f is periodic function of bounded variation then the Fourier

series of f converges to f uniformly.

Proof. We prove that above statement is not always true by the following example:

Consider the 2π-periodic extension of f(t) =
t

2
on [−π, π]. It is integrable, and of

bounded variation on [−π, π]. Then for any t ∈ (−π, π) we have

f(t) =
t

2
=
∑
n∈N

(−1)n+1

n
sinnt.

The series converges to 0 for t = −π, π (By Jordon’s point-wise convergence theorem

for the function f its Fourier series converges to
1

2
[f(t−) + f(t+)] at any point t ∈

[−π, π]). Thus Fourier series of f does not converge to f uniformly.
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4. If f and g are absolutely continuous on [a, b] show that fg is also absolutely contin-

uous. Use this to show that∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x)f ′ dx.

Proof. Since f, g are continuous, they are bounded on [a, b], say |f(x)| ≤ M and

|g(x)| ≤ N for all x ∈ [a, b]. Let ε > 0. Then there exists δ1 > 0 such that if {(ai, bi)}
is finite disjoint collection of open intervals in [a, b] with

∑
(bi − ai) < δ1, then∑

|f(bi)− f(ai)| <
ε

2M
.

Similarly, there exists δ2 > 0 such that if {(ai, bi)} is finite disjoint collection of open

intervals in [a, b] with
∑

(bi − ai) < δ1, then∑
|g(bi)− g(ai)| <

ε

2N
.

Let δ = min{δ1, δ2}. Then∑
|f(bi)g(bi)− f(ai)g(ai)| ≤

∑
[|f(bi)g(bi)− f(bi)g(ai)|+ |f(bi)g(ai)− f(ai)g(ai)|]

≤M
∑
|f(bi)− f(ai)|+N

∑
|g(bi)− g(ai)| < ε.

Hence fg is absolutely continuous.

Since f, g, fg are absolutely continuous functions, then f ′, g′, (fg)′ exist a.e. on [a, b]

and for all x ∈ [a, b] we have

(fg)(x) =

∫ x

a

(fg)′(x) dx+ (fg)(a)

=

∫ x

a

f ′(x)g(x) dx+

∫ x

a

f(x)g′(x) + (fg)(a)

=

∫ x

a

f ′(x)g(x) dx+

∫ x

a

f(x)g′(x) + (fg)(a)

By putting x = b we get,∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x)f ′(x) dx.

5. Prove that
∞∑
n=1

cosnx

n2
=
x2

4
− πx

2
+
π2

6
for 0 ≤ x ≤ 2π and show that the formula

does not hold for any x ∈ R \ [0, 2π].
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Proof. Take f(x) =
x2

4
− πx

2
+
π2

6
. By Fourier coefficients formula, we have

a0 =
1

2π

∫ 2π

0

f(x) dx

=
1

π

∫ 2π

0

[x2
4
− πx

2
+
π2

6

]
dx = 0.

For n ≥ 1,

an =
1

π

∫ 2π

0

f(x) cosnx dx

=
1

π

∫ 2π

0

[x2
4
− πx

2
+
π2

6

]
cosnx dx =

1

n2
.

bn =
1

π

∫ 2π

0

f(x) sinnx dx

=
1

π

∫ 2π

0

[x2
4
− πx

2
+
π2

6

]
sinnx dx = 0.

where we have used integration by parts for the formula of an, bn for each n ≥ 1.

Hence
∞∑
n=1

cosnx

n2
=
x2

4
− πx

2
+
π2

6
for 0 ≤ x ≤ 2π.

Suppose if possible formula holds for some x0 ∈ R \ [0, 2π]. Then there exists n ∈ Z
such that x0 ∈ [2nπ, 2(n + 1)π] where n 6= 0. By periodicity of the Fourier series we

have

f(x0 − 2nπ) = f(x0)

⇒ (x0 − 2nπ)2

4
− π(x0 − 2nπ)

2
+
π2

6
=
x20
4
− πx0

2
+
π2

6

⇒ x0 = (n+ 1)π

which is a contradiction as x0 ∈ [2nπ, 2(n+ 1)π] with n 6= 0. Thus the formula does

not hold for any x ∈ R \ [0, 2π].

6. Let {cn} be a sequence of positive numbers decreasing to 0. For what value of x does

the series
∞∑
n=1

cn sin(nx)

converge? Justify your claim.
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Proof. Define Sn(x) =
n∑

m=1

eimx =
einx − 1

1− e−ix
, x 6= kπ, k ∈ Z. Then

|Sn(x)| ≤ 2

|1− e−ix|
=

1

| sin x
2
|
.

Now using a technique for infinite series which is analogous to integration by parts

for all n ∈ N ∪ {0}, p ∈ N:

n+p∑
m=n+1

cme
imx = einx

[
cn+1S1(x) +

p∑
m=2

cn+m(Sm(x)− Sm−1(x))
]

= einx
[ p−1∑
m=1

Sm(x)(cn+m − cn+m+1) + cn+pSp(x)
]

Therefore

∣∣ n+p∑
m=n+1

cme
imx
∣∣ ≤ 1

| sin x
2
|
( p−1∑
m=1

(cn+m − cn+m+1) + cn+p
)

=
cn+1

| sin x
2
|

where we have used cn+m ≥ 0, cn+m − cn+m+1 ≥ 0. From this estimate, it follows

that series
∞∑
m=1

cme
imx converges for x 6= kπ, k ∈ Z. Therefore, its imaginary part

∞∑
n=1

cn sin(nx)

converges for x ∈ R \ {kπ : k ∈ Z} and for x = kπ, k ∈ Z series converges to 0

trivially. So given series converges for all x ∈ R.
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